Inteligencia artificial para la detección y prevención de la trata de personas

Contenido principal del artículo

Oswaldo Rosalío Aguilar Rivera

Resumen

La inteligencia artificial ha revolucionado la lucha contra la trata de personas, proporcionando herramientas avanzadas para su prevención e investigación. Tecnologías como el procesamiento de lenguaje natural, el análisis de big data, la geolocalización, el reconocimiento facial y el blockchain han demostrado ser eficaces en la identificación de redes criminales y en la detección de víctimas, a través del análisis automatizado de grandes volúmenes de datos. La inteligencia artificial permite anticipar patrones delictivos, rastrear transacciones financieras sospechosas y fortalecer la protección de identidad de las víctimas. Sin embargo, su implementación también plantea desafíos en términos de privacidad, sesgos algorítmicos y regulación legal, lo que exige un marco normativo sólido para garantizar su uso ético y transparente. Este estudio analiza el impacto de la inteligencia artificial en la prevención de la trata de personas y propone soluciones para maximizar sus beneficios sin comprometer los derechos humanos.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Aguilar Rivera, O. R. (2025). Inteligencia artificial para la detección y prevención de la trata de personas. Revista Mexicana De Ciencias Penales, 9(26), 3–26. https://doi.org/10.57042/rmcp.v9i26.895
Sección
Dossier
Biografía del autor/a

Oswaldo Rosalío Aguilar Rivera, Universidad Nacional Autónoma de México

Licenciado en Derecho por la Universidad La Salle Pachuca, maestro en Derecho Penal y Ciencias Penales por la Universidad Autónoma del Estado de Hidalgo, y candidato a doctor en el programa de doctorado del Instituto de Investigaciones Jurídicas de la Universidad Nacional Autónoma de México. Docente del Instituto Nacional de Ciencias Penales y profesor de la Universidad La Salle, Ciudad de México.

Métricas

Citas

Amnistía Internacional (2021). Surveillance and human rights: The risks of facial recognition technology. https://www.amnesty.org/en/latest/research/2021/06/surveillance-and-human-rights/

Bejarano Rodríguez, María, Teresa de Gasperis, Estefanía Eléxpuru Boullosa, Ana Romo Escribano (2023). El impacto de las nuevas tecnologías en la trata de seres humanos. Accem. https://www.accem.es/wp-content/uploads/2023/12/accem-impacto-tecnologias-trata-seres-humanos.pdf

Buolamwini, Joy y Tinmit Gebru (2018). Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification. Conference on Fairness, Accountability, and Transparency. Massachusetts: Gender Shades. https://proceedings.mlr.press/v81/buolamwini18a.html

Deparment of Homeland Security (2025). "About Blue Campaign". Blue Campaign. https://www.dhs.gov/blue-campaign/about-blue-campaign

Europol (2022). Seizing the Opportunity: 5 Recommendations for Crypto Assets-Related Crime and Money Laundering. 2022 Recommendations of the Joint Working Group on Criminal Finances and Cryptocurrencies. Europol y Basel Institute on Governance. https://baselgovernance.org/sites/default/files/2022-12/2022_Recommendations_Joint_Working_Group_on_Criminal_Finances_and_Cryptocurrencies.pdf

FMI: Fondo Monetario Internacional (2023). “Cryptocurrencies and Illicit Financial Transactions: Risks and Countermeasures”.https://www.imf.org

Hacibedel, Burcu y Héctor Pérez-Saiz (2023, 29 de septiembre)."Assessing Macrofinancial Risks from Crypto Assets". International Monetary Fund Working Papers. Fondo Monetario Internacional.

IBM: International Business Machines (2025). X-Force 2025 Threat Intelligence Index. https://www.ibm.com/thoughtleadership/institute-business-value/report/2025-threat-intelligence-index

IBM (s.f.-a). “¿Qué son las redes neuronales?”. https://www.ibm.com/mx-es/topics/neural-networks

IBM (s.f.-b). “¿Qué es un árbol de decisión?”. https://www.ibm.com/mx-es/topics/decision-trees

IBM (s.f.-c). “¿Qué es el clustering?”. https://www.ibm.com/eses/topics/clustering

Interpol (s.f.). “Reconocimiento facial”. https://www.interpol.int/es/Como-trabajamos/Policia-cientifica/Reconocimientofacial#:~:text=Desde%20su%20creaci%C3%B-3n%2C%20el%20Sistema,personas%20de%20inter%-C3%A9s%20y%20desaparecidos

Interpol y Unated Nations Interregional Crime and Justice Research Institute (UNICRI) (2019). Artificial Intelligence and Robotics for Law Enforcement. Torino: UNICRI.

IOM: International Organization for Migration (2021). “IOM Institutional Strategy on Legal Identity”. https://publications.iom.int/books/iom-institutional-strategy-legal-identity

Latonero, Mark (2011). Human Trafficking Online, The role of social Networking Sites and Online Classifieds. Center on Communication Leadership & Policy. Los Ángeles: University

of Southern Carolina.

Lavista Ferres, Juan M. y William B. Weeks, ai for Good: Applications in Sustainability, Humanitarian Action, and Health. Nashville: John Wiley & Sons.

Lyon, David (2018). The Culture of Surveillance: Watching as a Way of Life. Cambridge: Polity Press.

UNODC: Oficina de las Naciones Unidas contra la Droga y el Delito (2024). Global Report on Trafficking in Persons 2024. https://www.unodc.org/documents/data-and-analysis/glotip/2024/GLOTIP2024_BOOK.pdf

Parlamento Europeo y Consejo de la Unión Europea (2024). Reglamentom(UE) 2024/1689 del Parlamento Europeo y del Consejo, de 15 de julio de 2024, relativo a la inteligencia artificial y por el que se establecen disposiciones para su desarrollo, comercialización y uso. En Diario Oficial de la Unión Europea, L 257, de 20 de julio de 2024, 1-60. http://data.europa.eu/eli/reg/2024/1689/oj

Stop the Traffik (s.f.). “Stop the Traffik: Preventing Human Trafficking”. https://stopthetraffik.org/

Stop the Traffik (2025). Partnering to Fight Hidden Crime. https://stopthetraffik.org/wp-content/uploads/2025/04/MARCH-2025-EA-Brochure.pdf

World Economic Forum (2024). Digital Assets Regulation: Insights from Jurisdictional Approaches. Insight Report. https://www3.weforum.org/docs/WEF_Digital_Assets_Regulation_2024.pdf